Publications

You can also find my publications on Google Scholar.

Journal Articles

Project Thumbnail

Semantically Safe Robot Manipulation: From Semantic Scene Understanding to Motion Safeguard

L. Brunke, Y. Zhang, R. Römer, J. Naimer, S. Zhou, A. P. Schoellig

IEEE Robotics and Automation Letters (RA-L), 2025 (accepted)

[PDF] [Video]

Project Thumbnail

Vision-Based Uncertainty-Aware Motion Planning based on Probabilistic Semantic Segmentation

R. Römer*, A. Lederer*, S. Tesfazgi, S. Hirche

IEEE Robotics and Automation Letters (RA-L), 2023

[Paper] [Preprint] [Video]

Conference Papers

Project Thumbnail

Diffusion Predictive Control with Constraints

R. Römer, A. von Rohr, A. P. Schoellig

Learning for Dynamics & Control Conference (L4DC), 2025 (accepted)

[PDF]

Project Thumbnail

Flying through Moving Gates without Full State Estimation

R. Römer, T. Emmert, A. P. Schoellig

IEEE International Conference on Robotics and Automation (ICRA), 2025 (accepted)

[PDF]

Project Thumbnail

Is Data All That Matters? The Role of Control Frequency for Learning-Based Sampled-Data Control of Uncertain Systems

R. Römer, L. Brunke, S. Zhou, A. P. Schoellig

American Control Conference (ACC), 2024

[Paper] [Preprint] [Video]

Project Thumbnail

Catching Objects with a Robot Arm using Model Predictive Control

T. Gold, R. Römer, A. Völz, K. Graichen

American Control Conference (ACC), 2022

[PDF] [Video]

Workshop Papers

Project Thumbnail

Safe Offline Reinforcement Learning using Trajectory-Level Diffusion Models

R. Römer, L. Brunke, M. Schuck, A. P. Schoellig

ICRA Workshop—Back to the Future: Robot Learning Going Probabilistic, 2024

[PDF]

Theses

Project Thumbnail

The Role of Control Frequency for the Stability and Closed-Loop Performance of Uncertain Systems

R. Römer

Master Thesis at TU Munich, 2023

[PDF]

Supervisors: Lukas Brunke, Dr. SiQi Zhou, Prof. Angela P. Schoellig

Workshops

Project Thumbnail

Workshop on Robot Manipulation in a World of Abundant Data

A. P. Schoellig, A. Garg, K. Pereida, O. Mees, R. Römer, M. Schuck, S. Zhou

Conference on Robot Learning (CoRL), 2024

[Website]